STA 6093 Introduction to Applied Statistics for Agricultural and Life Sciences (3 credits)

Fall 2021

Time and Location: Online

THIS COURSE USES THE PROGRAMMING LANGUAGE R EXCLUSIVELY. YOU <u>DO NOT</u> NEED TO KNOW R COMING INTO THE COURSE, BUT YOU WILL KNOW IT WHEN YOU ARE FINISHED*

Instructors:

Denis Valle, 408 McCarty Hall C, 352-392-3806, <u>drvalle@ufl.edu</u> Ben Baiser, Building 116 Mowry Dr., 352-392-1947, bbaiser@ufl.edu

Teaching Assistants

Head TA: Tina Jackson (t.jackson@ufl.edu)

Grading TA: Lauren Trotta (lbtrotta@ufl.edu)

Online Office hours: Dr. Valle: Thursday 12:00-1:00 pm

TA, Tina Jackson: Thursday 5:00-6:00 pm

Date and location of final exam: All final exams will be on Monday, Dec. 13TH, 2021.

- Gainesville on-campus students (class number 21288 / section 109F) and students at RECs (class number 21287 / section 109D) will take the final exam in-person in a computer lab in UF's Gainesville campus, located in the Computer Science department (room CSE E231). There will be 2 available sessions: 8:30 am 11:30 am or 12:00 pm 3:00 pm.
- Students in class number 21286 / section 1098 will take the final exam online through HonorLock.

Course Description:

This course provides students with a conceptual and practical understanding of the application of statistics in the agricultural and life sciences. This is an **online course** that will use a combination of lectures, programming demonstrations, data exercises **using the programming language R**, group discussions, and primary literature to teach introductory statistics at the graduate level. **This course is NOT a "go at your own pace" course. Each module must be completed in a specific week (see Course learning objectives and weekly schedule below).**

Course goals:

- 1) Learn the programming language R
- 2) Familiarize students with the foundations of statistical analysis
- 3) Teach students basic statistical analysis and data management
- 4) Prepare students for advanced statistics courses they will take throughout their graduate career

Course learning objectives:

Week	Module	Module Learning objectives			
1	1. Broad				
	overview of statistics	 Describe the role of statistics in applied science. Identify the difference between a sample and the population. 			
		 Describe observational studies and its weaknesses and strengths. Describe experimental studies and its weaknesses 			
		and strengths.			
2	2. Reproducible	Describe the advantages of using a scripting			
	science / R	computer language for statistical analysis.			
		Define reproducible science.			
		Download R and R studio.			
		Know how to import and export data in R.			
3	3. Knowing your data and	 Describe the importance of querying and visualizing data. 			
	Summary	Be able to query and summarize data.			
	Statistics	 Calculate and understand the meaning of summary statistics (measures of location and spread). 			
4	4. Visualizing	Utilize graphical techniques to visualize your data			
	your data and	Identify outliers using graphical techniques			
	graphing your results	 Create effective and innovative graphical displays of results 			
5	5. Random variables and	Define what is a probability and a probability distribution			
	probability distributions	Describe the characteristics of the normal distribution.			
	นเรนามนนอกร	Explain why the normal distribution is so important			
6	6. Hypothesis testing	Define and develop a null hypothesis			
		Define and develop alternative hypothesis.			
		Identify when a result is "statistically significant".			
		Define precisely what a p-value is and how it is			
		computed to reach the conclusion that a			
		difference is not due to chance.			
		Identify Type 1 error			
		Identify Type 2 error			
7	8. Linear	Mathematically define a linear model.			
	models	Describe the four assumptions of linear models.			
		Conduct diagnostic tests for assumptions.			
		 Transform data to meet the assumptions of linear models 			
		Recognize the limitations of data transformations.			

8	7. T-tests	Know when a t-test is appropriate and which type of t test to use (o.g. paired two sample, one)			
		of t-test to use (e.g., paired, two sample, one sample t-tests).			
		Apply a t-test to data.			
		Understand the problems associated with multiple			
		statistical testing.			
9	9. ANOVA	Identify the types of data and experiments that an			
		ANOVA is appropriate for.			
		Run an ANOVA in R			
		Calculate an F-statistic.			
		Test hypothesis with ANOVA			
		 Interpret an ANOVA table and report ANOVA 			
		statistics.			
		Graphically display ANOVA results			
10	10. Simple	Know when regressions are appropriate			
	regression	Run a regression in R			
		Be able to interpret and report regression			
		outcomes.			
11	11 Multiple	Graphically display regression results			
11	11. Multiple regression	Identify the types of data and experiments that			
	regression	multiple regression is appropriate for.			
		Run a multiple regression in R			
		Detect multicollinearity among variables in			
		multiple regression.			
		 Interpret and graphically display interaction terms 			
		in multiple regression and ANOVA.			
		Define AIC scores.			
		Select models using stepwise procedures in R.			
12	12. Categorical	Identify the types of data and experiments that			
	data analysis	categorical data analysis is appropriate for.			
		 Construct and interpret a contingency table. 			
		Calculate and interpret a chi-square statistic.			
		Constitution process on square statistics			
13	13. Monte Carlo	Be able to conceptualize appropriate null			
	tests	hypothesis and test statistics for different			
		problems			
		Be able to implement simple Monte Carlo tests Had a standard and a second for the Carlo tests			
		Understand the pros and cons of Monte Carlo tests			
14	14. Future	Select the appropriate analyses for a given data .			
	classes/analyses	type.			
		Know future options for quantitative topics and			
		courses.			
	Einel				
L	Final exam				

Assignment Types:

There are 4 types of graded assignments in this course:

- 1) Activities: These are assignments individual or group activities that build on a modules content. They often involve finding and interpreting outside resources (e.g., popular science articles, scientific articles). These assignments are present in select modules and thus are not due every week. When a module does have an activity, it will be due on Sunday at 11:55pm (i.e., the end of the week's module)
- 2) Conceptual Quizzes: These quizzes cover the basic concepts learned in each module and are open from Monday at 1:00 am to Sunday at 11:55pm each week. Once you begin the conceptual quiz, you have 1 hour to complete it.
- 3) Data Quizzes: In the data quizzes, you will analyze data in R using the analyses you learned in each module. The data quizzes are open from Monday at 1:00 am to Sunday at 11:55pm each week. Once you begin the data quiz, you have 3 hours to complete it.
- 4) Discussion board: We expect students to engage and provide meaningful contributions (posting questions, answers, or additional resources) to the weekly discussion boards. Participation in the discussion board will be factored into grading when students are on the cusp of a letter grade (e.g., B+). Thus, the discussion board is an opportunity for you to help yourself but will not count against you in any way.

Due Dates for Assignments:

Assignment	Due	
Discussion board		
Activities	Sundays 11:55 pm	
Conceptual Quizzes	Sundays 11:55 pm	
Data Quizzes	Sundays 11:55 pm	

Grading:

Grading will be based on weekly quizzes (50% of the overall grade), activities (25% of the overall grade), and a final exam (25% of the overall grade). **Note that modules with more content have more quiz questions and are worth more points.**

Point range (%)	Letter Grade	GPA equivalent
93.0 – 100	А	4
90.0 – 92.9	A-	3.67
87.0 – 89.9	B+	3.33
83.0 – 86.9	В	3
80.0 - 82.9	B-	2.67
77.0- 79.9	C+	2.33
73.0 – 76.9	С	2
70.0 - 72.9	C-	1.67

67.0-69.9	D+	1.33
63.0- 66.9	D	1
60.0 - 62.9	D-	0.67
< 60	Е	0

Our philosophy is that you just learn by doing, thus this course is heavily based on working with data.

***We will drop your lowest grade for 1 quiz OR assignment (not including the final exam) ***

List of required and recommended materials

Textbooks (recommended):

- Gotelli NJ and AM Ellison. "A primer of ecological statistics", Second Edition. Sinauer, Sunderland, Massachusetts, USA (2013).
- Crawley, Michael J. "Statistics: an introduction using R." Wiley, (2005)

Software (Required):

- R, freely available at http://www.r-project.org
- A text editor, such as RStudio (http://www.rstudio.com/)

Pre-requisites: One undergraduate course in statistics

Class attendance: You are required to complete each module component by the due date. If you are an on-campus or REC international student, you are required to be present for the final exam. If you need to miss class due to field work or conferences, you must inform the instructor at least 2 weeks in advance.

Attendance and Make-Up Work

Requirements for class attendance and make-up exams, assignments and other work are consistent with university policies that can be found at:

https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.

Class participation: You are expected to participate in and class discussion boards via the internet.

IT help

A hardwired internet connection (not wireless) is highly recommended when working on quizzes and/or submitting assignments. If you have problems with CANVAS, you should contact:

- a) Staff in the SFRC online programs office by posting a question in the appropriate forum
- b) UF computing help desk "e-Learning Support Services" (<u>learning-support@ufl.edu</u> or (352) 392-4357 -> option 2 (Students))

These resources are also listed in the "Help!" tab on the left-hand side of Canvas.

Problems with R:

99.9% of problems with R should be solved within the discussion board. In the off chance that no one on the discussion board can solve your problem, email your T.A.

STA 6093 Introduction to Applied Statistics for Agricultural and Life Sciences (Spring 2021)

Online Course Evaluation Process

Student assessment of instruction is an important part of efforts to improve teaching and learning. At the end of the semester, students are expected to provide feedback on the quality of instruction in this course using a standard set of university and college criteria. These evaluations are conducted online at https://evaluations.ufl.edu. Evaluations are typically open for students to complete during the last two or three weeks of the semester; students will be notified of the specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results.

Academic Honesty

As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity." You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes, exams). Furthermore, as part of your obligation to uphold the Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

Software Use:

All faculty, staff and students of the university are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

Services for Students with Disabilities

The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation. 0001 Reid Hall, 352-392-8565, https://disability.ufl.edu/students/get-started/.

Campus Helping Resources

Each online distance learning program has a process for, and will make every attempt to resolve, student complaints within its academic and administrative departments at the program level. See http://distance.ufl.edu/studentcomplaints for more details.

Students experiencing crises or personal problems that interfere with their general well-being are encouraged to utilize the university's counseling resources. The Counseling & Wellness Center provides confidential counseling services at no cost for currently enrolled students. Resources are available on STA 6093 Introduction to Applied Statistics for Agricultural and Life Sciences (Spring 2021)

campus for students having personal problems or lacking clear career or academic goals, which interfere with their academic performance.

University Counseling & Wellness Center, 3190 Radio Road, 352-392-1575, www.counseling.ufl.edu/cwc/
 Counseling Services
 Groups and Workshops
 Outreach and Consultation
 Self-Help Library
 Wellness Coaching

Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/